Universal structural requirements for maximal robust perfect adaptation in biomolecular networks

Author:

Gupta AnkitORCID,Khammash MustafaORCID

Abstract

AbstractConsider a biomolecular reaction network that exhibits robust perfect adaptation to disturbances from several parallel sources. The well-known Internal Model Principle of control theory suggests that such systems must include a subsystem (called the “internal model”) that is able to recreate the dynamic structure of the disturbances. This requirement poses certain structural constraints on the network which we elaborate in this paper for the scenario where constant-in-time disturbances maximally affect network interactions and there is model uncertainty and possible stochasticity in the dynamics. We prove that these structural constraints are primarily characterized by a simple linear-algebraic stoichiometric condition which remains the same for both deterministic and stochastic descriptions of the dynamics. Our results reveal the essential requirements for maximal robust perfect adaptation in biology, with important implications for both systems and synthetic biology. We exemplify our results through many known examples of robustly adapting networks and we construct new examples of such networks with the aid of our linear-algebraic characterization.

Publisher

Cold Spring Harbor Laboratory

Reference50 articles.

1. Biological robustness

2. Perfect adaptation in biology;Cell Systems,2021

3. George Morgan Hughes . Homeostasis and Feedback Mechanisms. Cambridge University Press, 1964.

4. Robustness in simple biochemical networks

5. Models of Eukaryotic Gradient Sensing: Application to Chemotaxis of Amoebae and Neutrophils

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Noise in Biomolecular Systems: Modeling, Analysis, and Control Implications;Annual Review of Control, Robotics, and Autonomous Systems;2023-05-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3