Author:
Kim Honghyok,Bell Michelle
Abstract
ABSTRACTPropensity score (PS) matching to estimate causal effects of exposure is biased when unmeasured spatial confounding exists. Some exposures are continuous yet dependent on a binary variable (e.g., level of a contaminant (continuous) within a specified radius from residence (binary)). Further, unmeasured spatial confounding may vary by spatial patterns for both continuous and binary attributes of exposure. We propose a new generalized propensity score (GPS) matching method for such settings, referred to as conditional GPS (CGPS)-based spatial matching (CGPSsm). A motivating example is to investigate the association between proximity to refineries with high petroleum production and refining (PPR) and stroke prevalence in the southeastern United States. CGPSsm matches exposed observational units (e.g., exposed participants) to unexposed units by their spatial proximity and GPS integrated with spatial information. GPS is estimated by separately estimating PS for the binary status (exposed vs. unexposed) and CGPS on the binary status. CGPSsm maintains the salient benefits of PS matching and spatial analysis: straightforward assessments of covariate balance and adjustment for unmeasured spatial confounding. Simulations showed that CGPSsm can adjust for unmeasured spatial confounding. Using our example, we found positive association between PPR and stroke prevalence. Our R package, CGPSspatialmatch, has been made publicly available.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献