Calcium homeostasis disruption initiates rapid growth after micro-fragmentation in the scleractinian coral Porites lobata

Author:

Lock ColinORCID,Bentlage BastianORCID,Raymundo Laurie JORCID

Abstract

AbstractCoral reefs are ecosystems under increasing threat from global climate change. Coral restoration is a tool for preserving biological and ecological function of coral reefs by mitigating coral loss and maintaining the structural integrity and complexity of reefs. To generate the necessary stock for coral restoration, larger coral colonies are usually fragmented to generate smaller specimens for outplanting, taking advantage of the high regenerative ability of corals. In this study, we utilized RNA-seq technology to understand the physiological responses of Porites lobata colonies to physical fragmentation and outplanting, which have thus far not been characterized. Our results demonstrate that P. lobata fragments undergoing physical injury recover through two distinct phases: rapid wound regeneration of the cut margins, followed by a slower growth phase that cements the colony to the substrate. Our study found rapid physiological responses to acute physical injury and outplanting in the coral host that involved significantly increased energy production, calcium homeostasis disruption, and Endoplasmic Reticulum (ER) stress leading to increased antioxidant expression and rates of protein turnover. Our results suggest that phosphoinositide-mediated acute calcium homeostasis disruption stimulates wound recovery processes in response to physical injury. Symbiont gene expression revealed extremely low gene differences in response to fragmentation, growth, and outplanting. These results provide insight into the physiological mechanisms that allow for rapid wound healing and stabilization in response to physical injury in corals.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3