Transcription factor paralogs orchestrate alternative gene regulatory networks by context-dependent cooperation with multiple cofactors

Author:

Feng SiqianORCID,Rastogi ChaitanyaORCID,Loker Ryan E.ORCID,Glassford William J.ORCID,Rube H. TomasORCID,Bussemaker Harmen J.ORCID,Mann Richard S.ORCID

Abstract

AbstractIn eukaryotes, members of large transcription factor families often exhibit similar DNA binding properties in vitro, yet initiate paralog-specific gene regulatory networks in vivo. The serially homologous first (T1) and third (T3) thoracic legs of Drosophila, which result from alternative gene regulatory networks specified by the Hox proteins Scr and Ubx, respectively, offer a unique opportunity to address this paradox in vivo. Genome-wide analyses using epitope-tagged alleles of both Hox loci in the T1 and T3 leg imaginal discs, which are the precursors to the adult appendages and ventral body regions, show that ∼8% of Hox binding is paralog-specific. Binding specificity is mediated by interactions with distinct cofactors in different domains: the known Hox cofactor Exd acts in the proximal domain and is necessary for Scr to bind many of its paralog-specific targets, while in the distal leg domain, we identified the homeodomain protein Distal-less (Dll) as a novel Hox cofactor that enhances Scr binding to a different subset of genomic loci. Reporter genes confirm the in vivo roles of Scr+Dll and suggest that ∼1/3 of paralog-specific Hox binding in enhancers is functional. Together, these findings provide a genome-wide view of how Hox paralogs, and perhaps paralogs of other transcription factor families, orchestrate alternative downstream gene networks and suggest the importance of multiple, context-specific cofactors.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3