Reliable and efficient parameter estimation using approximate continuum limit descriptions of stochastic models

Author:

Simpson Matthew J.ORCID,Baker Ruth E.,Buenzli Pascal R.,Nicholson Ruanui,Maclaren Oliver J.

Abstract

AbstractStochastic individual-based mathematical models are attractive for modelling biological phenomena because they naturally capture the stochasticity and variability that is often evident in biological data. Such models also allow us to track the motion of individuals within the population of interest. Unfortunately, capturing this microscopic detail means that simulation and parameter inference can become computationally expensive. One approach for overcoming this computational limitation is to coarse-grain the stochastic model to provide an approximate continuum model that can be solved using far less computational effort. However, coarse-grained continuum models can be biased or inaccurate, particularly for certain parameter regimes. In this work, we combine stochastic and continuum mathematical models in the context of lattice-based models of two-dimensional cell biology experiments by demonstrating how to simulate two commonly used experiments: cell proliferation assays and barrier assays. Our approach involves building a simple statistical model of the discrepancy between the expensive stochastic model and the associated computationally inexpensive coarse-grained continuum model. We form this statistical model based on a limited number of expensive stochastic model evaluations at design points sampled from a user-chosen distribution, corresponding to a computer experiment design problem. With straightforward design point selection schemes, we show that using the statistical model of the discrepancy in tandem with the computationally inexpensive continuum model allows us to carry out prediction and inference while correcting for biases and inaccuracies due to the continuum approximation. We demonstrate this approach by simulating a proliferation assay, where the continuum limit model is the well-known logistic ordinary differential equation, as well as a barrier assay where the continuum limit model is closely related to the well-known Fisher-KPP partial differential equation. We construct an approximate likelihood function for parameter inference, both with and without discrepancy correction terms. Using maximum likelihood estimation, we provide point estimates of the unknown parameters, and use the profile likelihood to characterise the uncertainty in these estimates and form approximate confidence intervals. For the range of inference problems considered, working with the continuum limit model alone leads to biased parameter estimation and confidence intervals with poor coverage. In contrast, incorporating correction terms arising from the statistical model of the model discrepancy allows us to recover the parameters accurately with minimal computational overhead. The main tradeoff is that the associated confidence intervals are typically broader, reflecting the additional uncertainty introduced by the approximation process. All algorithms required to replicate the results in this work are written in the open source Julia language and are available at GitHub.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3