Curvelet Transform-based Sparsity Promoting Algorithm for Fast Ultrasound Localization Microscopy

Author:

You Qi,Trzasko Joshua D.,Lowerison Matthew R.,Chen Xi,Dong ZhijieORCID,Chandra Sekaran Nathiya Vaithiyalingam,Llano Daniel A.ORCID,Chen Shigao,Song PengfeiORCID

Abstract

AbstractUltrasound localization microscopy (ULM) based on microbubble (MB) localization was recently introduced to overcome the resolution limit of conventional ultrasound. However, ULM is currently challenged by the requirement for long data acquisition times to accumulate adequate MB events to fully reconstruct vasculature. In this study, we present a curvelet transform-based sparsity promoting (CTSP) algorithm that improves ULM imaging speed by recovering missing MB localization signal from data with very short acquisition times. CTSP was first validated in a simulated microvessel model, followed by the chicken embryo chorioallantoic membrane (CAM), and finally, in the mouse brain. In the simulated microvessel study, CTSP robustly recovered the vessel model to achieve an 86.94% vessel filling percentage from a corrupted image with only 4.78% of the true vessel pixels. In the chicken embryo CAM study, CTSP effectively recovered the missing MB signal within the vasculature, leading to marked improvement in ULM imaging quality with a very short data acquisition. Taking the optical image as reference, the vessel filling percentage increased from 2.7% to 42.2% using 50ms of data acquisition after applying CTSP. CTSP used 80% less time to achieve the same 90% maximum saturation level as compared with conventional MB localization. We also applied CTSP on the microvessel flow speed maps and found that CTSP was able to use only 1.6s of microbubble data to recover flow speed images that have similar qualities as those constructed using 33.6s of data. In the mouse brain study, CTSP was able to reconstruct the majority of the cerebral vasculature using 1-2s of data acquisition. Additionally, CTSP only needed 3.2s of microbubble data to generate flow velocity maps that are comparable to those using 129.6s of data. These results suggest that CTSP can facilitate fast and robust ULM imaging especially under the circumstances of inadequate microbubble localizations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3