Identification of Alkaloids and Related Intermediates of Dendrobium officinale by Solid-Phase Extraction Coupled with High-Performance Liquid Chromatography Tandem Mass Spectrometry

Author:

Song Cheng,Zhang Yunpeng,Manzoor Muhammad Aamir,Li Guohui

Abstract

AbstractJA signaling plays a pivotal role in plant stress responses and secondary metabolism. Many studies have demonstrated that jasmonates effectively induce the expressions of alkaloid biosynthesis genes in various plants, which rendered to the accumulation of alkaloid to counteract stresses. Despite the multiple roles of jasmonate (JA) in the regulation of plant growth and different stresses, less studied involved in the regulatory role of JA in D. officinale alkaloids. A strategy for the rapid identification of alkaloid and the intermediates of D. officinale was established based on a solid-phase extraction coupled with high-performance liquid chromatography tandem mass spectrometry method. By using SPE-HPLC-LTQ-Orbitrap method, the potential compounds were tentatively identified by aligning the accurate molecular weight with the METLIN and Dictionary of Natural Products databases. The chemical structures and main characteristic fragments of the potential compounds were further confirmed by retrieving the multistage mass spectra from the MassBank and METLIN databases.The Mass Frontier software was used to speculate the fragmentation pathway of the identified compounds. Seven alkaloids were separated and identified from D. officinale, which were mainly classified into five types (tropane alkaloids, tetrahydroisoquinoline alkaloids, quinolizidine alkaloids, piperidine alkaloids and spermidine alkaloids). Besides the alkaloids, forty-nine chemical substances, including guanidines, nucleotides, dipeptides, sphingolipids and nitrogen-containing glucosides, were concurrently identified. These findings gives the composition of chemicals currently found in D. officinale, which could provide the scientific method for the identification of alkaloids in other Dendrobium plants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3