Principled clustering of functional signals reveals gradients in processing both within the anterior hippocampus and across its long axis

Author:

Thorp John N.ORCID,Gasser Camille,Blessing EstherORCID,Davachi LilaORCID

Abstract

AbstractA particularly elusive puzzle concerning the hippocampus is how the structural differences along its long, anteroposterior axis might beget meaningful functional differences, particularly in terms of the granularity of information processing. One measure posits to quantify this granularity by calculating the average statistical independence of the BOLD signal across neighboring voxels, or inter-voxel similarity (IVS), and has shown the anterior hippocampus to process coarser-grained information than that in the posterior hippocampus. This model of the hippocampus, however, conflicts with a number of task-oriented findings, many of which have varied in their fMRI acquisition parameters and hippocampal parcellation methods. In order to reconcile these findings, we measured IVS across two separate resting-state fMRI acquisitions and compared the results across many of the most widely used parcellation methods in a large young-adult sample (Acquisition 1, N = 253; Acquisition 2, N = 183). Finding conflicting results across acquisitions and parcellations, we reasoned that a principled, data-driven approach to hippocampal parcellation is necessary. To this end, we implemented a group masked independent components analysis (mICA) to identify functional subunits of the hippocampus, most notably separating the anterior hippocampus into separate anterior-medial, anterior-lateral, and posteroanterior-lateral components. Measuring IVS across these components revealed a decrease in IVS along the medial-lateral axis of the anterior hippocampus but an increase from anterior to posterior. We conclude that representational granularity may not change linearly or unidirectionally across the hippocampus, and that moving the study of the hippocampus towards reproducibility requires grounding it in a functionally informed approach.Significance StatementProcessing information along hierarchical scales of granularity is critical for many of the feats of cognition considered most human. Recently, the changes in structure, cortical connectivity, and apparent functional properties across parcels of the hippocampal long axis have been hypothesized to underlie this hierarchical gradient in information processing. We show here, however, that the choice of parcellation method itself drastically affects the perceived granularity across the hippocampus, and that a principled, functionally informed approach to parcellation reveals gradients both within the anterior hippocampus and in non-linear form across the long axis. These results point to the issue of parcellation as a critical one in the study of the hippocampus and reorient interpretation of existing results.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3