Computer vision for assessing species color pattern variation from web-based community science images

Author:

Hantak Maggie M.ORCID,Guralnick Robert P.ORCID,Zare Alina,Stucky Brian J.

Abstract

SummaryOpenly available community science digital vouchers provide a wealth of data to study phenotypic change across space and time. However, extracting phenotypic data from these resources requires significant human effort. Here, we demonstrate a workflow and computer vision model for automatically categorizing species color pattern from community science images. Our work is focused on documenting the striped/unstriped color polymorphism in the Eastern Red-backed Salamander (Plethodon cinereus). We used an ensemble convolutional neural network model to analyze this polymorphism in 20,318 iNaturalist images. Our model was highly accurate (∼98%) despite image heterogeneity. We used the resulting annotations to document extensive niche overlap between morphs, but wider niche breadth for striped morphs at the range-wide scale. Our work showcases key design principles for using machine learning with heterogeneous community science image data to address questions at an unprecedented scale.

Publisher

Cold Spring Harbor Laboratory

Reference60 articles.

1. Ecological separation in a polymorphic terrestrial salamander

2. Barton, K. (2012). Package ‘MuMIn’. Model selection and model averaging based on information criteria. R package version 3.2.4. http://cran.r-project.org/web/packages/MuMIn/index.html.

3. Methods for broad-scale plant phenology assessments using citizen scientists’ photographs;Appl. Plant Sci,2020

4. Evolutionary response to global change: climate and land use interact to shape color polymorphism in a woodland salamander;Ecol. Evol,2017

5. Lead-phase and red-stripe color morphs of red-backed salamanders Plethodon cinereus differ in hematological stress indices: a consequence of differential predation pressure?;Curr. Zool,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3