Metabolic Engineering of Oleaginous Yeast Rhodotorula toruloides for Overproduction of Triacetic Acid Lactone

Author:

Cao Mingfeng,Tran Vinh G.,Qin Jiansong,Olson Andrew,Schultz J. Carl,Huang Chunshuai,Xie Dongming,Zhao Huimin

Abstract

AbstractThe plant-sourced polyketide triacetic acid lactone (TAL) has been recognized as a promising platform chemical for the biorefinery industry. However, its practical application was rather limited due to low natural abundance and inefficient cell factories for biosynthesis. Here we report the metabolic engineering of oleaginous yeast Rhodotorula toruloides for TAL overproduction. We first introduced a 2-pyrone synthase gene from Gerbera hybrida (GhPS) into R. toruloides and investigated the effects of different carbon sources on TAL production. We then systematically employed a variety of metabolic engineering strategies to increase the flux of acetyl-CoA by enhancing its biosynthetic pathways and disrupting its competing pathways. We found that overexpression of citrate lyase (ACL1) improved TAL production by 45% compared to the GhPS overexpressing strain, and additional overexpression of acetyl-CoA carboxylase (ACC1) further increased TAL production by 29%. Finally, we characterized the resulting strain I12-ACL1-ACC1 using fed-batch bioreactor fermentation in glucose or oilcane juice medium with acetate supplementation and achieved a titer of 28 g/L or 23 g/L TAL, respectively. This study demonstrates that R. toruloides is a promising host for production of TAL and other acetyl-CoA-derived polyketides from low-cost carbon sources.Graphical abstractTriacetic acid lactone (TAL) is a promising platform chemical. Cao et al. overexpressed 2-pyrone synthase in oleaginous yeast Rhodotorula toruloides to produce TAL. They systematically evaluated various metabolic gene targets to increase acetyl-CoA and malonyl-CoA levels for TAL production and found that overexpression of both ACL1 and ACC1 led to 28 g/L or 23 g/L of TAL from glucose or oilcane juice with acetate supplementation, respectively, in fed-batch fermentation.

Publisher

Cold Spring Harbor Laboratory

Reference56 articles.

1. Overcoming recalcitrant transformation and gene manipulation in Pucciniomycotina yeasts

2. Metabolic engineering in the host Yarrowia lipolytica;Metabolic Engineering,2018

3. Chalcone synthase superfamily of type III polyketide synthases from rhubarb Rheum palmatum;Proceedings of the Japan Academy, Series B,2005

4. YALI0E32769g (DGA1) and YALI0E16797g (LRO1) encode major triacylglycerol synthases of the oleaginous yeast Yarrowia lipolytica;Biochimica et Biophysica Acta (BBA) -Molecular and Cell Biology of Lipids,2011

5. Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production;Nature Communications,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3