Abstract
AbstractNeuronal growth regulator 1 (NEGR1) is a glycosylphosphatidylinositol-anchored cell adhesion molecule encoded by an obesity susceptibility gene. We demonstrate that NEGR1 accumulates in GABAergic inhibitory synapses in hypothalamic neurons, a GABA-synthesizing enzyme GAD65 attaches to the plasma membrane, and NEGR1 promotes clustering of GAD65 at the synaptic plasma membrane. GAD65 is removed from the plasma membrane with newly formed vesicles. The association of GAD65 with vesicles results in increased GABA synthesis. In NEGR1 deficient mice, the synaptic targeting of GAD65 is decreased, the GABAergic synapse densities are reduced, and the reinforcing effects of food rewards are blunted. In mice fed a high fat diet, levels of NEGR1 are increased and GAD65 abnormally accumulates at the synaptic plasma membrane. Our results indicate that NEGR1 regulates a previously unknown step required for synaptic targeting and functioning of GAD65, which can be affected by bidirectional changes in NEGR1 levels causing disruptions in the GABAergic signaling controlling feeding behavior.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献