A Deep Survival EWAS approach estimating risk profile based on pre-diagnostic DNA methylation: an application to Breast Cancer time to diagnosis

Author:

Massi Michela CarlottaORCID,Dominoni LorenzoORCID,Ieva FrancescaORCID,Fiorito GiovanniORCID

Abstract

AbstractPrevious studies for cancer biomarker discovery based on pre-diagnostic blood DNA methylation profiles, either ignore the explicit modeling of the time to diagnosis (TTD) as in a survival analysis setting, or provide inconsistent results. This lack of consistency is likely due to the limitations of standard EWAS approaches, that model the effect of DNAm at CpG sites on TTD independently. In this work, we argue that a global approach to estimate CpG sites effect profile is needed, and we claim that such approach should capture the complex (potentially non-linear) relationships interplaying between sites. To prove our concept, we develop a new Deep Learning-based approach assessing the relevance of individual CpG Islands (i.e., assigning a weight to each site) in determining TTD while modeling their combined effect in a survival analysis scenario. The algorithm combines a tailored sampling procedure with DNAm sites agglomeration, deep non-linear survival modeling and SHapley Additive exPlanations (SHAP) values estimation to aid robustness of the derived effects profile. The proposed approach deal with the common complexities arising from epidemiological studies, such as small sample size, noise, and low signal-to-noise ratio of blood-derived DNAm. We apply our approach to a prospective case-control study on breast cancer nested in the EPIC Italy cohort and we perform weighted gene-set enrichment analyses to demonstrate the biological meaningfulness of the obtained results. We compared the results of Deep Survival EWAS with those of a traditional EWAS approach, demonstrating that our method performs better than the standard approach in identifying biologically relevant pathways.Author summaryBlood-derived DNAm profiles could be exploited as new biomarkers for cancer risk stratification and possibly, early detection. This is of particular interest since blood is a convenient tissue to assay for constitutional methylation and its collection is non-invasive. Exploiting pre-diagnostic blood DNAm data opens the further opportunity to investigate the association of DNAm at baseline on cancer risk, modeling the relationship between sites’ methylation and the Time to Diagnosis. Previous studies mostly provide inconsistent results likely due to the limitations of standard EWAS approaches, that model the effect of DNAm at CpG sites on TTD independently. In this work we argue that an approach to estimate single CpG sites’ effect while modeling their combined effect on the survival outcome is needed, and we claim that such approach should capture the complex (potentially non-linear) relationships interplaying between sites. We prove this concept by developing a novel approach to analyze a prospective case-control study on breast cancer nested in the EPIC Italy cohort. A weighted gene set enrichment analysis confirms that our approach outperforms standard EWAS in identifying biologically meaningful pathways.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3