The Neisseria meningitidis iron acquisition protein HpuA moonlights as an adhesin and inhibits host cell migration

Author:

Shortt Gabrielle A.,Ren Xiaoyun,Otto Brianna M.,MacKichan Joanna K.ORCID

Abstract

AbstractNeisseria meningitidis can cause meningococcal disease, a rapidly developing and potentially fatal infection. Despite this, it normally resides as a commensal in the nasopharynx of healthy individuals. The mechanisms by which meningococci access deeper tissues remain unknown. Epidemiological data suggest that mucosal disruptions increase the risk of meningococcal disease. We previously investigated whether meningococci inhibit host cell wound repair, enhancing invasive disease risk. Here, using genome sequencing and a collection of closely related household isolates that differ in their ability to inhibit host wound repair, we identify the responsible meningococcal factor. This protein, HpuA, has previously been characterized as part of a bipartite heme acquisition transporter. We constructed mutants to demonstrate that HpuA, but not HpuB, inhibits wound repair, acts as an adhesin for epithelial cells, and promotes cellular invasion. We showed this was not due to iron starvation resulting from the bacteria, differences in growth rate, or manipulation of host haptoglobin. Heterologous expression of HpuA in E. coli mediated adherence to 16HBE cells in an HpuA-dependent manner and conferred an aggregative phenotype onto E. coli, suggesting that HpuA may play a role in the formation of microcolonies on host cells. We also demonstrated that iron supplementation of meningococci restored the inhibition of wound repair in strains lacking HpuA (NZCM112, ΔhpuA mutant) to levels seen with the wild type. This was also seen with unrelated carriage strains previously shown not to inhibit wound repair. Iron supplementation also increased adherence and invasion of meningococci for strains lacking HpuA, while not affecting those that expressed HpuA. These findings suggest there may be a second meningococcal protein that inhibits wound repair. Together, these results suggest that HpuA is an important meningococcal virulence factor with multiple moonlighting functions, mediating adherence, invasion, inhibition of wound repair, and bacterial aggregation.Author SummaryNeisseria meningitidis causes meningococcal disease, a potentially fatal and rapidly developing illness that most often occurs in children. Despite this, the bacteria are frequently carried harmlessly as part of the normal airway microflora in healthy people, only rarely causing invasive disease, which involves replication in the bloodstream or central nervous system. It remains unknown precisely how the bacteria reach the deeper tissues from the airways, though some epidemiological evidence suggests that wounds or disruptions to the airways may increase risk. Here, we show that a N. meningitidis protein, HpuA, moonlights from its usual job of acquiring nutrients from the host, to enable the bacteria to adhere to and invade host cells, as well as inhibiting wound closure. Furthermore, we also show that meningococci that lack HpuA acquire the ability to inhibit wound repair when they are supplemented with iron, suggesting that there are additional meningococcal proteins to be discovered that may inhibit wound repair.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3