ACME: an Affinity-based Cas9 Mediated Enrichment method for targeted nanopore sequencing

Author:

Iyer Shruti VORCID,Kramer MelissaORCID,Goodwin SaraORCID,McCombie W. RichardORCID

Abstract

AbstractTargeted sequencing significantly improves accuracy and coverage and aids in providing the depth necessary to detect rare alleles in a heterogenous population of cells. Until the introduction of nanopore Cas9 Targeted-Sequencing (nCATS), a lack of efficient long-read compatible targeting techniques made it difficult to study specific regions of interest on long-read platforms. Existing nCATS-based strategies are currently limited by the per molecule target lengths capturable (<30kb), requiring several Cas9 guides to tile across larger regions of interest, ultimately reducing the number of targets that can be surveyed per reaction. Also, longer read lengths help reduce mapping errors, making it more likely that complex structural rearrangements can be resolved. Absence of a background reduction step in nCATS also increases the competition between non-target and target fragments in the sequencing pool for pore occupancy, decreasing the overall percentage of on-target reads. To address this, we introduce ACME - an Affinity-based Cas9-Mediated Enrichment method - that helps reduce background reads, increasing on-target coverage and size of target regions that can be spanned with single reads to 100kb.ACME uses a HisTag-based isolation and pulldown of Cas-9 bound non-target reads, reducing the background noise in sequencing. We designed a panel of guide RNAs targeting 10 genes to enrich for specific regions of the cancer genome and tested them in two breast cell lines – MCF 10A and SK-BR-3. These gene targets spanned different size ranges (10kb to 150kb) allowing us to identify the largest target sizes that could be optimally captured by single molecules spanning the entire region. When compared with using just nCATS, the ACME method for background reduction increased the overall coverage across the entire length of all targets by 2-fold to 25-fold. By using ACME to eliminate smaller competing non-targets from the sequencing library, we saw a 3- to 7-fold increase in the number of reads spanning 100% of the gene targets when compared to nCATS. For one of our larger targets, BRCA2, we observed >60-fold target enrichment, close to 70x coverage, and 3-20 reads spanning the entire 95kb target. We observed an increase in enrichment, depth, and number of whole gene spanning reads for other genes on the panel as well across both cell lines, with enrichment as high as 4000-fold for some genes. Furthermore, ACME identified all SVs previously called within our targets by ONT and PacBio whole genome sequencing and performed on par with these platforms for SNP detection when compared with Illumina short-read whole genome sequencing.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3