A widespread group of large plasmids in methanotrophic Methanoperedens archaea

Author:

Schoelmerich Marie C.ORCID,Oubouter Heleen T.,Sachdeva RohanORCID,Penev PetarORCID,Amano Yuki,West-Roberts Jacob,Welte Cornelia U.ORCID,Banfield Jillian F.

Abstract

AbstractAnaerobic methanotrophic (ANME) archaea conserve energy from the breakdown of methane, an important driver of global warming, yet the extrachromosomal genetic elements that impact the activities of ANME archaea are little understood. Here we describe large plasmids associated with ANME archaea of the Methanoperedens genus. These have been maintained in two bioreactors that contain enrichment cultures dominated by different Methanoperedens species and co-occur with Methanoperedens species in other anoxic environments. By manual curation we show that two of the plasmids are large (155,607 bp and 191,912 bp), circular, and replicate bidirectionally. The group of Methanoperedens species that carry these plasmids is related to “Ca. Methanoperedens nitroreducens”, “Ca. Methanoperedens ferrireducens”, “Ca. Methanoperedens manganicus" and the plasmids occur in the same copy number as the main chromosome. The larger plasmid encodes transporters that potentially enhance access to Ni, which is required for the methyl-CoM reductase (Mcr), Co required for the cobalamin cofactor needed for methyltransferases, and amino acid uptake. We show that many plasmid genes are actively transcribed, including genes involved in plasmid chromosome maintenance and segregation, a Co2+/Ni2+ transporter and cell protective proteins. Notably, one plasmid carries three tRNAs and two colocalized genes encoding ribosomal protein uL16 and elongation factor eEF2. These are not encoded in the host Methanoperedens genome and uL16 and eEF2 were highly expressed, indicating an obligate interdependence between this plasmid and its host. The finding of plasmids of Methanoperedens opens the way for the development of genetic vectors that could be used to probe little understood aspects of Methanoperedens physiology. Ultimately, this may provide a route to introduce or alter genes that may enhance growth and overall metabolism to accelerate methane oxidation rates.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3