A strategy to optimize the peptide-based inhibitors against different mutants of the spike protein of SARS-CoV-2

Author:

Priya Prerna,Basit Abdul,Bandyopadhyay Pradipta

Abstract

AbstractSARS-CoV-2 virus has caused high-priority health concerns at a global level. Vaccines have stalled the proliferation of viruses to some extent. Yet, the emergence of newer, potentially more infectious, and dangerous mutants such as delta and omicron are among the major challenges in finding a more permanent solution for this pandemic. The effectiveness of antivirals Molnupiravir and Paxlovid, authorized for emergency use by the FDA, are yet to be assessed at larger populations. Patients with a high risk of disease progression or hospitalization have received treatment with a combination of antibodies (antibody-cocktail). Most of the mutations leading to the new lineage of SARS-CoV-2 are found in the spike protein of this virus that plays a key role in facilitating host entry. The current study has investigated how to modify a promising peptide-based inhibitor of spike protein, LCB3, against common mutations in the target protein so that it retains its efficacy against the spike protein. LCB3 being a prototype for protein-based inhibitors is an ideal testing system to learn about protein-based inhibitors. Two common mutations N501Y and K417N are considered in this work. Using a structure-based approach that considers free energy decomposition of residues, distance, and the interactions between amino acids, we propose the substitutions of amino acid residues of LCB3 inhibitors. Our binding free energy calculations suggest a possible improvement in the binding affinity of existing inhibitor LCB3 to the mutant forms of the S-protein using simple substitutions at specific positions of the inhibitor. This approach, being general, can be used in different inhibitors and other mutations and help in fighting against SARS-CoV-2.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3