COVID-19 infection enhances susceptibility to oxidative-stress induced parkinsonism

Author:

Smeyne Richard JORCID,Eells JeffreyORCID,Chatterjee DebotriORCID,Byrne MatthewORCID,Akula Shaw M.ORCID,Sriramula SrinivasORCID,O’Rourke Dorcas P.ORCID,Schmidt PeterORCID

Abstract

AbstractBackgroundViral induction of neurological syndromes has been a concern since parkinsonian-like features were observed in patients diagnosed with encephalitis lethargica subsequent to the 1918 influenza pandemic. Given the similarities in the systemic responses following SARS-CoV-2 infection with those observed after pandemic influenza, there is a question if a similar syndrome of post-encephalic parkinsonism could follow COVID-19 infection.ObjectivesTo determine if prior infection with SARS-CoV-2 increased sensitivity to a mitochondrial toxin known to induce parkinsonism.MethodshACE2 mice were infected with SARS-CoV-2 to induce mild to moderate disease. After 31 days recovery, mice were administered a non-lesion inducing dose of the parkinsonian toxin MPTP. Subsequent neuroinflammation and SNpc dopaminergic neuron loss was determined and compared to SARS-CoV-2 or MPTP alone.ResultshACE2 mice infected with SARS-CoV-2 or MPTP showed no SNpc DA neuron loss following MPTP. In mice infected and recovered from SARS-CoV-2 infection, MPTP induced a 23% or 19% greater loss of SNpc dopaminergic neurons than SARS-CoV-2 or MPTP, respectively (p□<□0.05).Examination of microglial activation showed a significant increase in the number of activated microglia in the SARS-CoV-2 + MPTP group compared to SARS-CoV-2 or MPTP alone.ConclusionsOur observations have important implications for long-term public health, given the number of people that have survived SARS-CoV-2 infection as well as for future public policy regarding infection mitigation. However, it will be critical to determine if other agents known to increase risk of PD also have synergistic effects with SARS-CoV-2 and if are abrogated by vaccination.FundingThis work was supported by grant from the State of North Carolina (PS, JE, DOR, RJS) and R21 NS122280 (RJS).

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3