Differential CO2-fixation potentials and supporting roles of phagotrophy and proton pump among plankton lineages in a subtropical marginal sea

Author:

Li HongfeiORCID,Chen Jianwei,Yu Liying,Fan Guangyi,Li Tangcheng,Li Ling,Yuan Huatao,Wang Jingtian,Wang Cong,Lin Senjie

Abstract

AbstractLineage-wise physiological activities of plankton communities in the ocean are important but challenging to characterize. Here we conducted whole-assemblage metatranscriptomic profiling at continental shelf and slope sites of South China Sea to investigate carbon fixation in different lineages. We catalogued 4.4 million unique genes, ∼37% being annotatable and mainly involved in microbial metabolism, photosynthesis, amino acid synthesis, oxidative phosphorylation, and two-component systems. With RuBisCO expression as proxy, Calvin carbon fixation (CCF) was mainly contributed by Bacillariophyta, Chlorophyta, Cyanobacteria, Haptophyta and non-diatom Stramenopiles, which was differentially affected by environmental factors among lineages. CCF exhibited positive or negative correlations with phagotrophy gene expression depending on lineages, suggesting phagotrophy enhances (Bacillariophyta, Haptophyta, and Chlorophyta) or complements (Dinophyta) CCF. Our data reveal significant potential of non-Calvin carbon fixation (NCF), mainly contributed by Flavobacteriales, Alteromonadales, Oceanospirillales and Rhodobacterales. Furthermore, in Flavobacteriales, Alteromonadales, Pelagibacterales and Rhodobacterales, NCF potential was positively correlated with proteorhodopsin expression, suggesting that NCF is energetically supported by proteorhodopsin. The novel insights into lineage-dependent potential of carbon fixation, widespread mixotrophy, and proteorhodopsin as energy source for NCF lay a methodological and informational foundation for further research to understand the carbon fixation and trophic landscape in the ocean.ImportanceLineage-dependent physiologies are very important for understanding the contributions of different lineages to the biogeochemical processes in the oceanic plankton, but it is hardly possible using classical ecological methods. Even though metatranscriptomic methods have now been increasingly used to investigate physiologies of marine plankton, lineage-specific contribution to carbon fixation and phagotrophy has not received due research effort. Using whole-assemblage (prokaryotes + eukaryotes) plankton metatranscriptomic approach, with RNA quantity-based calibration to allow comparison across separately sequenced samples, this study reveals differential capacities of carbon fixation among lineages, widespread mixotrophy, and the potential of proteorhodopsin as energy source for non-photosynthetic carbon fixation. With these novel insights this study lays a methodological and informational foundation for further research to understand the carbon fixation and trophic landscape in the ocean.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3