Single-particle cryo-EM analysis of the shell architecture and internal organization of an intact α-carboxysome

Author:

Evans Sasha L.,Al-Hazeem Monsour M. J.,Mann Daniel,Smetacek Nicolas,Beavil Andrew J.,Sun Yaqi,Chen Taiyu,Dykes Gregory F.,Liu Lu-Ning,Bergeron Julien R. C.

Abstract

AbstractCarboxysomes are proteaceous bacterial microcompartments (BMCs) that sequester the key enzymes for carbon fixation in cyanobacteria and some proteobacteria. They consist of a virus-like icosahedral shell, encapsulating carbonic anhydrase and ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO), which catalyses the dehydration of bicarbonate into CO2, the first step of the Calvin–Benson–Bassham cycle. Despite their significance in carbon fixation and great bioengineering potentials, the structural characterization of native carboxysomes, including the shell and the internal organization, is currently limited to low-resolution tomography studies. Notably, the degree of heterogeneity of the shell, and the internal arrangement of enzymes, remain poorly understood. Here, we report the structural characterization of a native α-carboxysome from a marine cyanobacterium by single-particle cryo-EM. We determine the structure of RuBisCO enzyme at 2.9 Å resolution. In addition, we obtain low-resolution maps of the icosahedral protein shell and the concentric interior organisation. In combination with artificial intelligence (AI)-driven modelling approaches, we exploited these maps to propose a complete atomic model of an intact carboxysome. This study provides insight into carboxysome structure and protein-protein interactions involved in carboxysome assembly. Advanced knowledge about carboxysome architecture and structural plasticity is critical for not only a better understanding of biological carbon fixation mechanism but also repurposing carboxysomes in synthetic biology for biotechnological applications.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3