Widespread contribution of transposable elements to the rewiring of mammalian 3D genomes and gene regulation

Author:

Choudhary Mayank NKORCID,Quaid KaraORCID,Xing XiaoyunORCID,Schmidt Heather,Wang TingORCID

Abstract

ABSTRACTTransposable elements (TEs) are major contributors of genetic material in mammalian genomes. These often include binding sites for architectural proteins, including the multifarious master protein, CTCF. These TE-derived architectural protein binding sites shape the 3D genome by creating loops, domains, and compartments borders as well as RNA-DNA chromatin interactions, all of which play a role in the compact packaging of DNA in the nucleus and have the potential to facilitate regulatory function.In this study, we explore the widespread contribution of TEs to mammalian 3D genomes by quantifying the extent to which they give rise to loops and domain border differences across various cell types and species using a variety of 3D genome mapping technologies. We show that specific (sub-)families of TEs have significantly contributed to lineage-specific 3D chromatin structures in specific mammals. In many cases, these loops have the potential to facilitate interaction between distant cis-regulatory elements and target genes, and domains have the potential to segregate chromatin state to impact gene expression in a lineage-specific and cell-type-specific manner. Backing our extensive conformation study cataloguing and computational analyses, we perform experimental validation using CRISPR-Cas9 to delete one such candidate TE and show disruption of species-specific 3D chromatin structure.Taken together, we comprehensively quantify and selectively validate our finding that TEs contribute significantly to 3D genome organization and continuously shape it to affect gene regulation during the course of mammalian evolution over deep time.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3