Scalable and deep profiling of mRNA targets for individual microRNAs with chimeric eCLIP

Author:

Manakov Sergei A,Shishkin Alexander A,Yee Brian A,Shen Kylie A,Cox Diana C,Park Samuel S,Foster Heather M,Chapman Karen B,Yeo Gene W,Van Nostrand Eric LORCID

Abstract

SummaryOur expanding knowledge of the roles small regulatory RNAs play across numerous areas of biology, coupled with the promise of RNA-targeted therapies and small RNA-based medicines, create an urgent need for tools that can accurately identify and quantify small RNA:target interactions at scale. MicroRNAs (miRNA) are a major class of small RNAs in plants and animals. The experimental capture of miRNA:mRNA interactions by ligation into chimeric RNA fragments in chimeric CrossLinking and ImmunoPrecipitation (CLIP) provides a direct readout of miRNA targets with high-throughput sequencing. Despite the power of this approach, widespread adoption of chimeric CLIP has been slow due to both methodological technical complexity as well as limited recovery of chimeric molecules (particularly beyond the most abundant miRNAs). Here we describe chimeric eCLIP, in which we integrate a chimeric ligation step into AGO2 eCLIP to enable chimeric read recovery. We show that removal of the cumbersome polyacrylamide gel and nitrocellulose membrane transfer step common to CLIP techniques can be omitted for chimeric AGO2 eCLIP to create a simplified high throughput version of the assay that maintains high signal- to-noise. With the increased yield of recovered miRNA:mRNA interactions in no-gel chimeric eCLIP, we show that simple enrichment steps using either PCR or on-bead probe capture can be added to chimeric eCLIP in order to target and enrich libraries for chimeric reads specific to one or more miRNAs of interest in both cell lines and tissue samples, resulting in 30- to 175-fold increases in recovery of chimeric reads for miRNAs of interest. We further demonstrate that the same probe-capture approach can be used to recover miRNA interactions for a targeted gene of interest, revealing both distinct miRNA targeting as well as co-targeting by several miRNAs from the same seed family. RNA-seq analysis of gene expression following miRNA overexpression confirmed miRNA-mediated repression of chimeric eCLIP-identified targets and indicated that probe-enriched chimeric eCLIP can provide additional sensitivity to detect regulated targets among genes that either contain or lack computationally predicted miRNA target sites. Thus, we believe that chimeric eCLIP will be a useful tool for quantitative profiling of miRNA targets in varied sample types at scale, and for revealing a deeper picture of regulatory networks for specific miRNAs of biological interest.HighlightsNo-gel chimeric eCLIP improves recovery of miRNA:mRNA interactions by 70-foldProbe- and PCR-enrichment deeply profiles mRNA targets of miRNAs of interestChimeric eCLIP targets experimentally identify non-computationally predicted interactionsIncreased depth recovers ∼6 million miRNA:target chimeras in HEK293T

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3