N-acylethanolamine acid amide hydrolase is a novel target for drugs against SARS-CoV-2 and Zika virus

Author:

Lai MicheleORCID,La Rocca Veronica,Amato Rachele,Iacono Elena,Filipponi Carolina,Catelli Elisa,Bogani Lucia,Fonnesu Rossella,Lottini Giulia,De Carli Alessandro,Mengozzi Alessandro,Masi Stefano,Quaranta Paola,Spezia Pietro Giorgio,Freer Giulia,Lenzi Paola,Fornai Francesco,Piomelli Daniele,Pistello Mauro

Abstract

AbstractSeveral compounds have been tested against SARS-CoV-2; at present, COVID-19 treatments decrease the deleterious inflammatory response and acute lung injury. However, the best therapeutic response would be expected by combining anti-inflammatory properties, while concomitantly blocking viral replication. These combined effects should drastically reduce both infection rate and severe complications induced by novel SARS-CoV-2 variants. Therefore, we explored the antiviral potency of a class of anti-inflammatory compounds that inhibit the N-Acylethanolamine acid amidase (NAAA). This enzyme catalyzes the hydrolysis of palmitoylethanolamide (PEA), a bioactive lipid that mediates anti-inflammatory and analgesic activity through the activation of peroxisome proliferator receptor-α (PPAR-α). Similarly, this pathway is likely to be a significant target to impede viral replication since PPAR-α activation leads to dismantling of lipid droplets, where viral replication of Flaviviruses and Coronaviruses occurs.Here, we show that either genetic or pharmacological inhibition of the NAAA enzyme leads to five-fold reduction in the replication of both SARS-CoV-2 and ZIKV in various cell lines. Once NAAA enzyme is blocked, both ZIKV and SARS CoV-2 replication decrease, which parallels a sudden five-fold decrease in virion release. These effects induced by NAAA inhibition occurs concomitantly with stimulation of autophagy during infection. Remarkably, parallel antiviral and anti-inflammatory effects of NAAA antagonism were confirmed in ex-vivo experiments, within SARS-CoV-2 infected human PBMC cells, in which both viral genomes and TNF-α production drop by ~60%. It is known that macrophages contribute to viral spread, excessive inflammation and macrophage activation syndrome that NAAA inhibitors might prevent, reducing the macrophage-induced acute respiratory distress syndrome and subsequent death of COVID-19 patients.

Publisher

Cold Spring Harbor Laboratory

Reference45 articles.

1. A systematic review of SARS-CoV-2 vaccine candidates;Signal Transduct Target Ther,2020

2. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine

3. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine

4. Palmitoylethanolamide: A Natural Body-Own Anti-Inflammatory Agent, Effective and Safe against Influenza and Common Cold;Int J Inflam,2013

5. Anandamide suppresses pain initiation through a peripheral endocannabinoid mechanism

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3