Conflict- and error-related theta activities are coupled to BOLD signals in different brain regions

Author:

Beldzik EwaORCID,Ullsperger MarkusORCID,Domagalik AleksandraORCID,Marek TadeuszORCID

Abstract

AbstractBoth conflict and error processing have been linked to the midfrontal theta power (4-8 Hz) increase as indicated by EEG studies and greater hemodynamic activity in the anterior midcingulate cortex (aMCC) as indicated by fMRI studies. Conveniently, the source of the midfrontal theta power was estimated in or nearby aMCC. However, previous studies using concurrent EEG and fMRI recordings in resting-state or other cognitive tasks observed only a negative relationship between theta power and BOLD signal in the brain regions typically showing task-related deactivations. In this study, we used a simultaneous EEG-fMRI technique to investigate a trial-by-trial coupling between theta power and hemodynamic activity during the performance of two conflict tasks. Independent component analysis (ICA) was applied to denoise the EEG signal and select individual midfrontal EEG components, whereas group ICA was applied to fMRI data to obtain a functional parcellation of the frontal cortex. Using a linear mixed- effect model, theta power was coupled with the peak of hemodynamic responses from various frontal, cingulate, and insular cortical sites to unravel the potential brain sources that contribute to conflict- and error-related theta variability. Although several brain regions exhibited conflict-related increases in hemodynamic activity, the conflict pre-response theta showed only a negative correlation to BOLD signal in the midline area 9 (MA9), a region exhibiting conflict-sensitive deactivation. Conversely, and more expectedly, error-related theta showed a positive relationship to activity in the aMCC. Our results provide novel evidence suggesting that the amplitude of pre-response theta reflects the process of active inhibition that suppresses the MA9 activity. This process is affected independently by the stimulus congruency, reaction times variance, and is susceptible to the time-on-task effect. Finally, it predicts the commitment of an omission error. Together, our findings highlight that conflict- and error-related theta oscillations represent fundamentally different processes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3