Optimization of Neuroprosthetic Vision via End-to-end Deep Reinforcement Learning

Author:

Küçükoğlu Burcu,Rueckauer Bodo,Ahmad Nasir,de Ruyter van Steveninck Jaap,Güçlü Umut,van Gerven Marcel

Abstract

AbstractVisual neuroprostheses are a promising approach to restore basic sight in visually impaired people. A major challenge is to condense the sensory information contained in a complex environment into meaningful stimulation patterns at low spatial and temporal resolution. Previous approaches considered task-agnostic feature extractors such as edge detectors or semantic segmentation, which are likely suboptimal for specific tasks in complex dynamic environments. As an alternative approach, we propose to optimize stimulation patterns by end-to-end training of a feature extractor using deep reinforcement learning agents in virtual environments. We present a task-oriented evaluation framework to compare different stimulus generation mechanisms, such as static edge-based and adaptive end-to-end approaches like the one introduced here. Our experiments in Atari games show that stimulation patterns obtained via task-dependent end-to-end optimized reinforcement learning result in equivalent or improved performance compared to fixed feature extractors on high difficulty levels. These findings signify the relevance of adaptive reinforcement learning for neuroprosthetic vision in complex environments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3