Neuronal-spiking-based closed-loop stimulation during cortical ON and OFF states in freely moving mice

Author:

Kahn MartinORCID,Krone Lukas B.,Blanco-Duque Cristina,Guillaumin Mathilde C.C.,Mann Edward O.,Vyazovskiy Vladyslav V.ORCID

Abstract

AbstractThe slow oscillation (SO) is a central neuronal dynamic during sleep and is generated by alternating periods of high and low neuronal activity (ON and OFF states). Mounting evidence causally links the SO to sleep’s functions, and it has recently become possible to manipulate the SO non-invasively and phase-specifically. These developments represent promising clinical avenues, but they also highlight the importance of improving our understanding of how ON/OFF states affect incoming stimuli and what role they play in neuronal plasticity. Most studies using closed-loop stimulation rely on the electroencephalogram (EEG) and local field potential (LFP) signals, which reflect neuronal ON and OFF states only indirectly. Here we develop an online detection algorithm based on spiking activity recorded from laminar arrays in mouse motor cortex. We find that online detection of ON and OFF states reflects specific phases of spontaneous LFP SO. Our neuronal-spiking-based closed-loop procedure offers a novel opportunity for testing the functional role of SO in sleep-related restorative processes and neural plasticity.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3