Abstract
AbstractMutations continue to accumulate within the SARS-CoV-2 genome, and the ongoing epidemic has shown no signs of ending. It is critical to predict problematic mutations that may arise in clinical environments and assess their properties in advance to quickly implement countermeasures against future variant infections. In this study, we identified mutations resistant to remdesivir, which is widely administered to SARS-CoV-2-infected patients, and discuss the cause of resistance. First, we simultaneously constructed eight recombinant viruses carrying the mutations detected in in vitro serial passages of SARS-CoV-2 in the presence of remdesivir. Time course analyses of cellular virus infections showed significantly higher infectious titers and infection rates in mutant viruses than wild type virus under treatment with remdesivir. Next, we developed a mathematical model in consideration of the changing dynamic of cells infected with mutant viruses with distinct propagation properties and defined that mutations detected in in vitro passages canceled the antiviral activities of remdesivir without raising virus production capacity. Finally, molecular dynamics simulations of the NSP12 protein of SARS-CoV-2 revealed that the molecular vibration around the RNA-binding site was increased by the introduction of mutations on NSP12. Taken together, we identified multiple mutations that affected the flexibility of the RNA binding site and decreased the antiviral activity of remdesivir. Our new insights will contribute to developing further antiviral measures against SARS-CoV-2 infection.Significance StatementConsidering the emerging Omicron strain, quick characterization of SARS-CoV-2 mutations is important. However, owing to the difficulties in genetically modifying SARS-CoV-2, limited groups have produced multiple mutant viruses. Our cutting-edge reverse genetics technique enabled construction of eight reporter-carrying mutant SARS-CoV-2 in this study. We developed a mathematical model taking into account sequential changes and identified antiviral effects against mutant viruses with differing propagation capacities and lethal effects on cells. In addition to identifying the positions of mutations, we analyzed the structural changes in SARS-CoV-2 NSP12 by computer simulation to understand the mechanism of resistance. This multidisciplinary approach promotes the evaluation of future resistance mutations.
Publisher
Cold Spring Harbor Laboratory
Reference45 articles.
1. A new coronavirus associated with human respiratory disease in China
2. WHO, WHO Coronavirus (COVID-19) dashboard. https://covid19.who.int/. Accessed 4 February 2022.
3. National Institutes of Health (NIH), Clinical Spectrum of SARS-CoV-2 infection. https://www.covid19treatmentguidelines.nih.gov/overview/clinical-spectrum/. Accessed 22 January 2022.
4. Clinical characteristics of COVID-19 in 104 people with SARS-CoV-2 infection on the Diamond Princess cruise ship: a retrospective analysis;Lancet Infect Dis,2020
5. Illness duration and symptom profile in symptomatic UK school-aged children tested for SARS-CoV-2;Lancet Child Adolesc Health,2021
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献