T cells use distinct topological and membrane receptor scanning strategies that individually coalesce during receptor recognition

Author:

Cai En,Beppler CaseyORCID,Eichorst John,Marchuk Kyle,Krummel Matthew F.ORCID

Abstract

AbstractDuring immune surveillance, CD8 T cells scan the surface of antigen presenting cells using dynamic microvillar palpation and movements as well as by having their receptors pre-concentrated into patches. Here, we use real-time lattice light sheet microscopy to demonstrate the independence of microvillar and membrane receptor patch scanning. While T cell receptor (TCR) patches can distribute to microvilli, they do so stochastically and not preferentially as for other receptors such as CD62L. The distinctness of TCR patch movement from microvillar movement extends to many other receptors that form patches that also scan independently of the TCR. An exception to this is the CD8 co-receptor which largely co-migrates in patches that overlap with or are closely adjacent to those containing TCRs. Microvilli that assemble into a synapse contain various arrays of the engaged patches, notably of TCRs and the inhibitory receptor PD-1, creating a pastiche of occupancies that vary from microvillar contact to contact. In summary, this work demonstrates that localization of receptor patches within the membrane and on microvillar projections is stochastic prior to antigen detection and that such stochastic variation may play into the generation of many individually-composed receptor patch compositions at a single synapse.Significance statementMotile T cell microvilli palpate surfaces to facilitate surface scanning in a pattern that is independent of the movement of pre-formed patches of transmembrane antigen-receptors across those microvilli; once T cell receptors engage, the microvilli act to scaffold multiple receptors within a microvillar close-contact.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3