Close-kin mark-recapture methods to estimate demographic parameters of mosquitoes

Author:

Sharma Yogita,Bennett Jared B.,Rašić Gordana,Marshall John M.

Abstract

AbstractClose-kin mark-recapture (CKMR) methods have recently been used to infer demographic parameters such as census population size and survival for fish of interest to fisheries and conservation. These methods have advantages over traditional mark-recapture methods as the mark is genetic, removing the need for physical marking and recapturing that may interfere with parameter estimation. For mosquitoes, the spatial distribution of close-kin pairs has been used to estimate mean dispersal distance, of relevance to vector-borne disease transmission and novel biocontrol strategies. Here, we extend CKMR methods to the life history of mosquitoes and comparable insects. We derive kinship probabilities for mother-offspring, father-offspring, full-sibling and half-sibling pairs, where an individual in each pair may be a larva, pupa or adult. A pseudo-likelihood approach is used to combine the marginal probabilities of all kinship pairs. To test the effectiveness of this approach at estimating mosquito demographic parameters, we develop an individual-based model of mosquito life history incorporating egg, larva, pupa and adult life stages. The simulation labels each individual with a unique identification number, enabling close-kin relationships to be inferred for sampled individuals. Using the dengue vectorAedes aegyptias a case study, we find the CKMR approach provides unbiased estimates of adult census population size, adult and larval mortality rates, and larval life stage duration for logistically feasible sampling schemes. Considering a simulated population of 3,000 adult mosquitoes, estimation of adult parameters is accurate when ca. 40 adult females are sampled biweekly over a three month period. Estimation of larval parameters is accurate when adult sampling is supplemented with ca. 120 larvae sampled biweekly over the same period. The methods are also effective at detecting intervention-induced increases in adult mortality and decreases in population size. As the cost of genome sequencing declines, CKMR holds great promise for characterizing the demography of mosquitoes and comparable insects of epidemiological and agricultural significance.Author summaryClose-kin mark-recapture (CKMR) methods are a genetic analogue of traditional mark-recapture methods in which the frequency of marked individuals in a sample is used to infer demographic parameters such as census population size and mean dispersal distance. In CKMR, the mark is a close-kin relationship between individuals (parents and offspring, siblings, etc.). While CKMR methods have mostly been applied to aquatic species to date, opportunities exist to apply them to insects and other terrestrial species. Here, we explore the application of CKMR to mosquitoes, withAedes aegypti, a primary vector of dengue, chikungunya and yellow fever, as a case study. By analyzing simulatedAe. aegyptipopulations, we find the CKMR approach provides unbiased estimates of adult census population size, adult and larval mortality rates, and larval life stage duration, and may be informative of intervention impact. Optimal sampling schemes are compatible withAe. aegyptiecology and field studies. This study represents the first theoretical exploration of the application of CKMR to an insect species, and demonstrates its potential for characterizing the demography of insects of epidemiological and agricultural importance.

Publisher

Cold Spring Harbor Laboratory

Reference39 articles.

1. Close-kin mark-recapture;Statistical Science,2016

2. Automated optogenetic feedback control for precise and robust regulation of gene expression and cell growth

3. Genetic relatedness reveals total population size of white sharks in eastern Australia and New Zealand;Scientific Reports,2018

4. Validation of close-kin mark-recapture (CKMR) methods for estimating population abundance;Methods in Ecology and Evolution,2019

5. Considering sampling bias in close-kin mark-recapture abundance estimates of Atlantic salmon;Ecology and Evolution,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3