Reconstitution reveals friction-driven membrane scission by the human ESCRT-III proteins CHMP1B and IST1

Author:

Cada A. King,Pavlin Mark R.,Castillo Juan P.,Tong Alexander B.,Larsen Kevin P.,Ren Xuefeng,Yokom Adam,Tsai Feng-Ching,Shiah Jamie,Bassereau Patricia M.,Bustamante Carlos J.,Hurley James H.ORCID

Abstract

AbstractThe endosomal sorting complexes required for transport (ESCRT) system is an ancient and ubiquitous membrane scission machinery that catalyzes the budding and scission of membranes. ESCRT-mediated scission events, exemplified by those involved in the budding of HIV-1, are usually directed away from the cytosol (‘reverse-topology’), but they can also be directed towards the cytosol (‘normal-topology’). Of the ESCRT complexes 0-III, ESCRT-III is most directly implicated in membrane severing. Various subunits of ESCRT-III recruit the AAA+ ATPase VPS4, which is essential for ESCRT disassembly and reverse topology membrane scission. The ESCRT-III subunits CHMP1B and IST1 can coat and constrict positively curved membrane tubes, suggesting that these subunits could catalyze normal topology membrane severing, perhaps in conjunction with a AAA+ ATPase. CHMP1B and IST1 bind and recruit the microtubule-severing AAA+ ATPase spastin, a close relative of VPS4, suggesting that spastin could have a VPS4-like role in normal topology membrane scission. In order to determine whether CHMP1B and IST1 are capable of membrane severing on their own or in concert with VPS4 or spastin, we sought to reconstitute the process in vitro using membrane nanotubes pulled from giant unilamellar vesicles (GUVs) using an optical trap. CHMP1B and IST1 copolymerize on membrane nanotubes, forming stable scaffolds that constrict the tubes, but do not, on their own, lead to scission. However, CHMP1B-IST1-scaffolded tubes were severed when an additional extensional force was applied, consistent with a friction-driven scission mechanism. Spastin colocalized with CHMP1B enriched sites but did not disassemble the CHMP1B-IST1 coat from the membrane. VPS4 resolubilized CHMP1B and IST1 but did not lead to scission. These data show that the CHMP1B and IST1 tubular coat contributes to membrane scission. Constriction alone is insufficient for scission. However, the dynamical extension of the coated tube does lead to scission. Finally, we find that in the normal topology setting analyzed here, scission is independent of VPS4 and spastin. These observations show that the CHMP1B-IST1 ESCRT-III combination is capable of severing membranes by a friction-driven mechanism.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3