Convergent coexpression of autism associated genes suggests some novel risk genes may not be detectable in large-scale genetic studies

Author:

Liao CalwingORCID,Moyses-Oliveira Mariana,De Esch Celine EF,Bhavsar Riya,Nuttle Xander,Li Aiqun,Yu Alex,Burt Nicholas D.,Erdin Serkan,Fu Jack M.,Wang Minghui,Morley Theodore,Han Lide,Dion Patrick A.,Rouleau Guy A.,Zhang Bin,Brennand Kristen J.ORCID,Talkowski Michael E.ORCID,Ruderfer Douglas M.,

Abstract

AbstractAutism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorder characterized by deficits in social interactions and communication. Protein function altering variants in many genes have been shown to contribute to ASD risk; however, understanding the biological convergence across so many genes has been difficult and genetic studies depending on presence of deleterious variation may be limited in implicating highly intolerant genes with shorter coding sequences. Here, we demonstrate that coexpression patterns from human post-mortem brain samples (N = 993) are significantly correlated with the transcriptional consequences of CRISPR perturbations (gene editing, interference and activation) in human neurons (N = 17). Across 71 ASD risk genes, there is significant tissue-specific transcriptional convergence that implicates synaptic pathways. Tissue specific convergence of risk genes is a generalizable phenomenon, shown additionally in schizophrenia (brain) and atrial fibrillation (heart). The degree of this convergence in ASD is significantly correlated with the level of association to ASD from sequencing studies (rho = -0.32, P = 3.03 ×10−65) as well as differential expression in post-mortem ASD brains (rho = -0.23, P = 2.39×10−43). After removing all genes statistically associated with ASD, the remaining positively convergent genes showed intolerance to functional mutations, had shorter coding lengths than the ASD genes and were enriched for genes with clinical reports of potential pathogenic contribution to ASD. These results indicate that leveraging convergent coexpression can identify potentially novel risk genes that are unlikely to be discovered by sequencing studies. Overall, this work provides a simple approach to functionally proxy CRISPR perturbation, demonstrates significant context-specific transcriptional convergence among known risk genes of multiple diseases, and proposes novel ASD risk gene candidates.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3