Pulsatile Gaussian-Enveloped Tones (GET) Vocoders for Cochlear-Implant Simulation

Author:

Meng QinglinORCID,Zhou Huali,Lu Thomas,Zeng Fan-GangORCID

Abstract

AbstractAcoustic simulations of cochlear implants (CIs) allow for studies of perceptual performance with minimized effects of large CI individual variability. Different from conventional simulations using continuous sinusoidal or noise carriers, the present study employs pulsatile Gaussian-enveloped tones (GETs) to simulate several key features in modern CIs. Subject to the time-frequency uncertainty principle, the GET has a well-defined tradeoff between its duration and bandwidth. Two types of GET vocoders were implemented and evaluated in normal-hearing listeners. In the first implementation, constant 100-Hz GETs were used to minimize within-channel temporal overlap while different GET durations were used to simulate electric channel interaction. This GET vocoder could produce vowel and consonant recognition similar to actual CI performance. In the second implementation, 900-Hz/channel pulse trains were directly mapped to 900-Hz GET trains to simulate the maxima selection and amplitude compression of a widely-usedn-of-m processing strategy, or the Advanced Combination Encoder. The simulated and actual implant performance of speech-in-noise recognition was similar in terms of the overall trend, absolute mean scores, and standard deviations. The present results suggest that the pulsatile GET vocoders can be used as alternative vocoders to simultaneously simulate several key CI processing features and result in similar speech perception performance to that with modern CIs.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3