Abstract
AbstractAcoustic simulations of cochlear implants (CIs) allow for studies of perceptual performance with minimized effects of large CI individual variability. Different from conventional simulations using continuous sinusoidal or noise carriers, the present study employs pulsatile Gaussian-enveloped tones (GETs) to simulate several key features in modern CIs. Subject to the time-frequency uncertainty principle, the GET has a well-defined tradeoff between its duration and bandwidth. Two types of GET vocoders were implemented and evaluated in normal-hearing listeners. In the first implementation, constant 100-Hz GETs were used to minimize within-channel temporal overlap while different GET durations were used to simulate electric channel interaction. This GET vocoder could produce vowel and consonant recognition similar to actual CI performance. In the second implementation, 900-Hz/channel pulse trains were directly mapped to 900-Hz GET trains to simulate the maxima selection and amplitude compression of a widely-usedn-of-m processing strategy, or the Advanced Combination Encoder. The simulated and actual implant performance of speech-in-noise recognition was similar in terms of the overall trend, absolute mean scores, and standard deviations. The present results suggest that the pulsatile GET vocoders can be used as alternative vocoders to simultaneously simulate several key CI processing features and result in similar speech perception performance to that with modern CIs.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献