Diagnostic Ion Data Analysis Reduction (DIDAR) allows rapid quality control analysis and filtering of multiplexed single cell proteomics data

Author:

Jenkins ConorORCID,Orsburn Benjamin C.ORCID

Abstract

AbstractRecent advances in the sensitivity and speed of mass spectrometers utilized for proteomics and metabolomics workflows has led to a dramatic increase in data file size and density. For a field already challenged by data complexity due to a dependence on desktop PC architecture and the Windows operating systems, further compromises appear inevitable as data density scales. As one method to reduce data complexity, we present herein a light-weight python script that can rapidly filter and provide analysis metrics from tandem mass spectra based on the presence and number of diagnostic fragment ions determined by the end user. Diagnostic Ion Data Analysis Reduction (DIDAR) can be applied to any mass spectrometry dataset to create smaller output files containing only spectra likely to contain post-translational modifications or chemical labels of interest. In this study we describe the application DIDAR within the context of multiplexed single cell proteomics workflows. When applied in this manner using reporter fragment ions as diagnostic signatures, DIDAR can provide quality control metrics based on the presence of reporter ions derived from single human cells and simplified output files for search engine analysis. The simple output metric text files can be used to rapidly flag entire LCMS runs with technical issues and remove them from downstream analysis based on end user minimum requirements. Acquisition files that pass these criteria are further improved through the automatic removal of spectra where insufficient signal from single cells is observed. We describe the application of DIDAR to two recently described multiplexed single cell proteomics datasets.Abstract Graphic

Publisher

Cold Spring Harbor Laboratory

Reference28 articles.

1. Prakash, A. ; Ahmad, S. ; Majumder, S. ; Jenkins, C. ; Orsburn, B. Bolt: A New Age Peptide Search Engine for Comprehensive MS/MS Sequencing Through Vast Protein Databases in Minutes. J. Am. Soc. Mass Spectrom. 2019. https://doi.org/10.1007/s13361-019-02306-3.

2. Yates, J. R. ; Ruse, C. I. ; Nakorchevsky, A. Proteomics by Mass Spectrometry: Approaches, Advances, and Applications. Annual Review of Biomedical Engineering. 2009. https://doi.org/10.1146/annurev-bioeng-061008-124934.

3. Martin, J. C. ; Maillot, M. ; Mazerolles, G. ; Verdu, A. ; Lyan, B. ; Migné, C. ; Defoort, C. ; Canlet, C. ; Junot, C. ; Guillou, C. ; Manach, C. ; Jabob, D. ; Bouveresse, D. J. R. ; Paris, E. ; Pujos-Guillot, E. ; Jourdan, F. ; Giacomoni, F. ; Courant, F. ; Favé, G. ; Le Gall, G. ; Chassaigne, H. ; Tabet, J. C. ; Martin, J. F. ; Antignac, J. P. ; Shintu, L. ; Defernez, M. ; Philo, M. ; Alexandre-Gouaubau, M. C. ; Amiot-Carlin, M. J. ; Bossis, M. ; Triba, M. N. ; Stojilkovic, N. ; Banzet, N. ; Molinié, R. ; Bott, R. ; Goulitquer, S. ; Caldarelli, S. ; Rutledge, D. N. Can We Trust Untargeted Metabolomics? Results of the Metabo-Ring Initiative, a Large-Scale, Multi-Instrument Inter-Laboratory Study. Metabolomics 2015. https://doi.org/10.1007/s11306-014-0740-0.

4. Kind, T. ; Tsugawa, H. ; Cajka, T. ; Ma, Y. ; Lai, Z. ; Mehta, S. S. ; Wohlgemuth, G. ; Barupal, D. K. ; Showalter, M. R. ; Arita, M. ; Fiehn, O. Identification of Small Molecules Using Accurate Mass MS/MS Search. Mass Spectrometry Reviews. 2018. https://doi.org/10.1002/mas.21535.

5. Ribbenstedt, A. ; Ziarrusta, H. ; Benskin, J. P. Development, Characterization and Comparisons of Targeted and Non-Targeted Metabolomics Methods. PLoS One 2018. https://doi.org/10.1371/journal.pone.0207082.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3