Increased Potency and Breadth of SARS-CoV-2 Neutralizing Antibodies After a Third mRNA Vaccine Dose

Author:

Muecksch Frauke,Wang Zijun,Cho Alice,Gaebler Christian,Tanfous Tarek Ben,DaSilva Justin,Bednarski Eva,Ramos Victor,Zong Shuai,Johnson Brianna,Raspe Raphael,Schaefer-Babajew Dennis,Shimeliovich Irina,Daga Mridushi,Yao Kai-Hui,Schmidt Fabian,Millard Katrina G.,Turroja Martina,Jankovic Mila,Oliveria Thiago Y.,Gazumyan Anna,Caskey Marina,Hatziioannou Theodora,Bieniasz Paul D.,Nussenzweig Michel C.

Abstract

AbstractThe omicron variant of SARS-CoV-2 infected very large numbers of SARS-CoV-2 vaccinated and convalescent individuals1–3. The penetrance of this variant in the antigen experienced human population can be explained in part by the relatively low levels of plasma neutralizing activity against Omicron in people who were infected or vaccinated with the original Wuhan-Hu-1 strain4–7. The 3rd mRNA vaccine dose produces an initial increase in circulating anti-Omicron neutralizing antibodies, but titers remain 10-20-fold lower than against Wuhan-Hu-1 and are, in many cases, insufficient to prevent infection7. Despite the reduced protection from infection, individuals that received 3 doses of an mRNA vaccine were highly protected from the more serious consequences of infection8. Here we examine the memory B cell repertoire in a longitudinal cohort of individuals receiving 3 mRNA vaccine doses9,10. We find that the 3rd dose is accompanied by an increase in, and evolution of, anti-receptor binding domain specific memory B cells. The increase is due to expansion of memory B cell clones that were present after the 2nd vaccine dose as well as the emergence of new clones. The antibodies encoded by these cells showed significantly increased potency and breadth when compared to antibodies obtained after the 2nd vaccine dose. Notably, the increase in potency was especially evident among newly developing clones of memory cells that differed from the persisting clones in targeting more conserved regions of the RBD. Overall, more than 50% of the analyzed neutralizing antibodies in the memory compartment obtained from individuals receiving a 3rd mRNA vaccine dose neutralized Omicron. Thus, individuals receiving 3 doses of an mRNA vaccine encoding Wuhan-Hu-1, have a diverse memory B cell repertoire that can respond rapidly and produce antibodies capable of clearing even diversified variants such as Omicron. These data help explain why a 3rd dose of an mRNA vaccine that was not specifically designed to protect against variants is effective against variant-induced serious disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3