Abstract
HSP27 (HSPB1) is a systemically expressed human small heat-shock protein that forms large, dynamic oligomers and functions in various aspects of cellular homeostasis. Mutations in HSP27 cause Charcot-Marie-Tooth disease, the most common inherited disorder of the peripheral nervous system. A particularly severe form of the disease is triggered by the P182L mutation within the highly conserved IxI/V motif of HSP27. Here, we observed that the P182L variant of HSP27 lacks the ability to prevent the aggregation of client proteins and formed significantly larger oligomers both in vitro and in vivo. NMR spectroscopy revealed that the P182L IxI/V motif binds its α-crystallin domain with significantly lower association rate, and thus affinity, rendering the binding site more available for other interactors. We identified 22 IxI/V-containing proteins that are known to interact with HSP27 and could therefore bind with enhanced affinity to the P182L variant. We validated this hypothesis through co-immunoprecipitation experiments, revealing that the IxI/V motif-bearing co-chaperone BAG3 indeed binds with higher affinity to the P182L variant. Our results provide a mechanistic basis for the impact of the P182L mutation on HSP27, and highlight the general importance of the IxI/V motif and its role in protein-protein interaction networks.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献