Markov Katana: a Novel Method for Bayesian Resampling of Parameter Space Applied to Phylogenetic Trees

Author:

Pollard Stephen T.,Fukushima Kenji,Wang Zhengyuan O.,Castoe Todd A.,Pollock David D.

Abstract

ABSTRACTPhylogenetic inference requires a means to search phylogenetic tree space. This is usually achieved using progressive algorithms that propose and test small alterations in the current tree topology and branch lengths. Current programs search tree topology space using branch-swapping algorithms, but proposals do not discriminate well between swaps likely to succeed or fail. When applied to datasets with many taxa, the huge number of possible topologies slows these programs dramatically. To overcome this, we developed a statistical approach for proposal generation in Bayesian analysis, and evaluated its applicability for the problem of searching phylogenetic tree space. The general idea of the approach, which we call ‘Markov katana’, is to make proposals based on a heuristic algorithm using bootstrapped subsets of the data. Such proposals induce an unintended sampling distribution that must be determined and removed to generate posterior estimates, but the cost of this extra step can in principle be small compared to the added value of more efficient parameter exploration in Markov chain Monte Carlo analyses. Our prototype application uses the simple neighbor-joining distance heuristic on data subsets to propose new reasonably likely phylogenetic trees (including topologies and branch lengths). The evolutionary model used to generate distances in our prototype was far simpler than the more complex model used to evaluate the likelihood of phylogenies based on the full dataset. This prototype implementation indicates that the Markov katana approach could be easily incorporated into existing phylogenetic search programs and may prove a useful alternative in conjunction with existing methods. The general features of this statistical approach may also prove useful in disciplines other than phylogenetics. We demonstrate that this method can be used to efficiently estimate a Bayesian posterior.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3