Abstract
AbstractMitochondrial dysfunction contributes to the pathogenesis of Parkinson’s disease but it is not clear why inherent mitochondrial defects lead specifically to the death of dopaminergic neurons of the mid brain. PINK1 is mitochondrial kinase andPINK1mutations cause early onset Parkinson’s disease.We found that in neuronal progenitors, PINK1 regulates mitochondrial morphology, mitochondrial contact to the endoplasmic reticulum (ER) and the phosphorylation of Miro1. A compensatory metabolic shift towards lipid synthesis provides mitochondria with the components needed for membrane renewal and oxidative phosphorylation, maintaining the mitochondrial network once mature.Cholesterol is increased by loss of PINK1, promoting overall membrane rigidity. This alters the distribution of phosphorylated DAT at synapses and impairs dopamine uptake. PINK1 is required for the phosphorylation of tyrosine hydroxylase at Ser19, dopamine and calcium homeostasis and dopaminergic pacemaking.We suggest a novel mechanism for PINK1 pathogenicity in Parkinson’s disease in addition to but not exclusive of mitophagy. We also provide a basis for potential therapeutics by showing that low doses of the cholesterol depleting drug ß-cyclodextrin reverse PINK1-specific phenotypes.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献