Learning under stress: The inverted-U-shape function revisited

Author:

Salehi Basira,Cordero M. Isabel,Sandi Carmen

Abstract

Although the relationship between stress intensity and memory function is generally believed to follow an inverted-U-shaped curve, strikingly this phenomenon has not been demonstrated under the same experimental conditions. We investigated this phenomenon for rats’ performance in a hippocampus-dependent learning task, the radial arm water maze (RAWM). Variations in stress intensity were induced using different water temperatures (25°C, 19°C, and 16°C), which elicited increased plasma corticosterone levels. During spatial training over three consecutive days, an inverted-U shape was found, with animals trained at 19°C making fewer errors than animals trained at either higher (16°C) or lower (25°C) stress conditions. Interestingly, this function was already observed by the last trial of day 1 and maintained on the first day trial of day 2. A long-term recall probe test administered under equal temperature conditions (20°C) revealed differences in performance according to the animals’ former training conditions; i.e., platform searching for rats trained at 25°C was less accurate than for rats trained at either 16°C or 19°C. In reversal learning, groups trained at both 19°C and 25°C showed better performance than the 16°C group. We also found an interaction between anxiety and exploration traits on how individuals were affected by stressors during spatial learning. In summary, our findings confirm, for the first time, the existence of an inverted-U-shape memory function according to stressor intensity during the early learning and memory phases in a hippocampus-dependent task, and indicate the existence of individual differences related to personality-like profiles for performance at either high or low stress conditions.

Publisher

Cold Spring Harbor Laboratory

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3