Genetic draft and valley crossing

Author:

Kessinger Taylor,Van Cleve JeremyORCID

Abstract

ABSTRACTLiving systems are characterized by complex adaptations which require multiple coordinated mutations in order to function. Empirical studies of fitness landscapes that result from the many possible mutations in a gene region reveal many fitness peaks and valleys that connect them. Thus, it is possible that some complex adaptations have arisen by evolutionary paths whose intermediate states are neutral or even deleterious. When intermediates are deleterious, traversing such an evolutionary path is known as “crossing a fitness valley”. Previous efforts at studying this problem have rigorously characterized the rate at which such complex adaptations evolve in populations of roughly equally fit individuals. However, populations that are very large or have broad fitness distributions, such as many microbial populations, adapt quickly, which substantially alters the fate and dynamics of individual mutations due to the action of genetic draft. We investigate the rate at which complex adaptations evolve in these rapidly adapting populations in regions without recombination. We confirm that rapid adaptation overall increases the time required to cross a valley; however, rapid adaptation can make it easier for deeper valleys to be crossed relative to the time required for single beneficial mutations to sweep to fixation.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3