Interactions of pathogenic and commensal strains of Mannheimia haemolytica with differentiated bovine airway epithelial cells grown at an air-liquid interface

Author:

Cozens Daniel,Sutherland Erin,Lauder Miquel,Taylor Geraldine,Berry Catherine C.,Davies Robert L.

Abstract

AbstractMannheimia haemolyticaserotype A2 is a common commensal species present in the nasopharynx of healthy cattle. However, prior to the onset of bovine pneumonic pasteurellosis, there is sudden increase inM. haemolyticaserotype A1 within the upper respiratory tract. The events during this selective proliferation of serotype A1 strains are poorly characterised. In this investigation, a differentiated bovine airway epithelial cell culture was used to study the interactions of A1 and A2 bovine isolates with the respiratory epithelium. This model reproduced the key defences of the airway epithelium, including tight junctions and mucociliary clearance. Although initial adherence of the serotype A1 strains was low, by 12 hours post-infection the bacteria was able to traverse the tight junctions to form foci of infection below the apical surface. The size, density and number of these foci increased with time, as did the cytopathic effects observed in the bovine bronchial epithelial cells. Penetration ofM. haemolyticaA1 into the sub-apical epithelium was shown to be through transcytosis but not paracytosis. Commensal A2 bovine isolates however were not capable of colonising the model to a high degree, and did not penetrate the epithelium following initial adherence at the apical surface. This difference in their ability to colonise the respiratory epithelium may account for the sudden proliferation of serotype A1 in the onset of pneumonia pasteurellosis. The pathogenesis observed was replicated by virulent A2 ovine isolates; however colonisation was 10-fold lower in comparison to bovine A1 strains. This investigation provides new insight into the interactions ofM. haemolyticawith bovine airway epithelial cells which are occurringin vivoduring pneumonia pasteurellosis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3