Antibiotic resistant bacteria and commensal fungi are common and conserved in the mosquito microbiome

Author:

Hyde JosephineORCID,Gorham Courtney,Brackney Doug E.,Steven BlaireORCID

Abstract

AbstractThe emerging and increasing prevalence of bacterial antibiotic resistance is a significant public health challenge. To begin to tackle this problem, it will be critical to not only understand the origins of this resistance but also document environmental reservoirs of antibiotic resistance. In this study we investigated the possibility that both colony and field caught mosquitoes could harbor antibiotic resistant bacteria. Specifically, we characterized the antibiotic resistant bacterial populations from colony-reared Aedes aegypti larvae and adults and two field caught mosquito species Coquillettidia perturbans and Ochlerotatus canadensis. The cultured bacterial populations were dominated by isolates belonging to the class Gammaproteobacteria. Among the antibiotic resistant populations, we found bacteria resistant to carbenicillin, kanamycin, and tetracycline, including bacteria resistant to a cocktail of all three antibiotics in combination. The antibiotic resistant bacteria were numerically rare, at most 5% of total cell counts. Isolates were characterized by 16S rRNA gene sequencing, and clustering into Operational Taxonomic Units (OTUs; 99% sequence identity). 27 antibiotic resistant OTUs were identified, although members of an OTU did not always share the same resistance profile. This suggests the clustering was either not sensitive enough to distinguish different bacteria taxa or different antibiotic resistant sub-populations exist within an OTU. Finally, the antibiotic selection opened up a niche to culture mosquito-associated fungi, and 10 fungal OTUs (28S rRNA gene sequencing) were identified. Two fungal OTUs both classified to the class Microbotryomycetes were commonly identified in the field-caught mosquitoes. Thus, in this study we demonstrate that antibiotic resistant bacteria and certain fungi are common and conserved mosquito microbiome members. These observations highlight the potential of invertebrates to serve as vehicles for the spread of antibiotic resistance throughout the environment.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3