WT and A53T α-synuclein systems: Melting Diagram and its new interpretation

Author:

Bokor M.ORCID,Tantos Á.,Tompa P.,Han K.-H.,Tompa K.

Abstract

AbstractParkinson’s disease is connected with abnormal α-synuclein (αS) aggregation. Energetics of potential barriers governing motions of hydration water is examined. Information about the distributions and heights of potential barriers is gained by a thermodynamical approach. The ratios of the heterogeneous water-binding interfaces measure proteins’ structural disorder. All αS forms possess secondary structural elements though they are intrinsically disordered. Monomers are functional at the lowest potential barriers, where mobile hydration water exists, with monolayer coverage of mobile hydration. The αS monomer contains 33% secondary structure and is more compact than a random coil. A53T αS monomer has a more open structure than the wild type. Monomers realize all possible hydrogen bonds. Half of the mobile hydration water amount for monomers is missing in αS oligomers and αS amyloids. Oligomers are ordered by 66%. Mobile water molecules in the first hydration shell of amyloids are the weakest bound compared to other forms. Wild type and A53T amyloids show identical, low-level hydration, and are considered as disordered to 75%.Statement of SignificanceAggregation of α-synuclein into oligomers, amyloid fibrils is a hallmark of Parkinson’s disease. A thermodynamic approach provides information on the heterogeneity of protein-water bonds in the wild type and A53T mutant monomers, oligomers, amyloids. This information can be related to ratios of heterogeneous water-binding interfaces, which measure the proteins’ structural disorder. Both α-synuclein monomers are intrinsically disordered. The monomers nevertheless have 33% secondary structure. They are functional as long as mobile water molecules surround them. They realize every possible H-bonds with water. Oligomers are like globular proteins with 66% ordered structure. Amyloids are disordered to 75% and are poorly hydrated with loosely bound water. Their hydration is identical. Oligomers, amyloids have only half as much hydrating mobile water as monomers.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3