Controlling Structural Bias in Intrinsically Disordered Proteins Using Solution Space Scanning

Author:

Holehouse Alex SORCID,Sukenik ShaharORCID

Abstract

AbstractIntrinsically disordered proteins or regions (IDRs) differ from their well-folded counterparts by lacking a stable tertiary state. Instead, IDRs exist in an ensemble of conformations and often possess localized, loosely held residual structure that can be a key determinant of their activity. With no extensive network of non-covalent bonds and a high propensity for exposed surface areas, the various features of an IDR’s ensemble – including local residual structure and global conformational biases – are an emergent property of both the amino acid sequence and the solution environment. Here, we attempt to understand how shifting solution conditions can alter an IDR’s ensemble. We present an efficient computational method to alter solution-protein interactions we term Solution Space (SolSpace) Scanning. SolSpace scanning uses all-atom Monte-Carlo simulations to construct ensembles under a wide range of distinct solution conditions. By tuning the interactions of specific protein moieties with the solution in a systematic manner we can both enhance and reduce local residual structure. This approach allows the ‘design’ of distinct residual structures in IDRs, offering an alternative approach to mutational studies for exploring sequence-to-ensemble relationships. Our results raise the possibility of solution-based regulation of protein functions both outside and within the dynamic solution environment of cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3