Author:
Liu Yanjie,Tewari Rita,Ning Jue,Blagborough Andrew M.,Garbom Sara,Pei Jimin,Grishin Nick V.,Steele Robert E.,Sinden Robert E.,Snell William J.,Billker Oliver
Abstract
The cellular and molecular mechanisms that underlie species-specific membrane fusion between male and female gametes remain largely unknown. Here, by use of gene discovery methods in the green alga Chlamydomonas, gene disruption in the rodent malaria parasite Plasmodium berghei, and distinctive features of fertilization in both organisms, we report discovery of a mechanism that accounts for a conserved protein required for gamete fusion. A screen for fusion mutants in Chlamydomonas identified a homolog of HAP2, an Arabidopsis sterility gene. Moreover, HAP2 disruption in Plasmodium blocked fertilization and thereby mosquito transmission of malaria. HAP2 localizes at the fusion site of Chlamydomonas minus gametes, yet Chlamydomonas minus and Plasmodium hap2 male gametes retain the ability, using other, species-limited proteins, to form tight prefusion membrane attachments with their respective gamete partners. Membrane dye experiments show that HAP2 is essential for membrane merger. Thus, in two distantly related eukaryotes, species-limited proteins govern access to a conserved protein essential for membrane fusion.
Publisher
Cold Spring Harbor Laboratory
Subject
Developmental Biology,Genetics
Cited by
292 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献