Abstract
AbstractCellular systems have evolved numerous mechanisms to finely control signalling pathway activation and properly respond to changing environmental stimuli. This is underpinned by dynamic spatiotemporal patterns of gene expression. Indeed, in addition to gene transcription and translation regulation, modulation of protein levels, dynamics and localization are also essential checkpoints that govern cell functions. The introduction of tetracycline-inducible promoters has allowed gene expression control using orthogonal small molecules, facilitating rapid and reversible manipulation to study gene function in biological systems. However, differing protein stabilities means this solely transcriptional regulation is insufficient to allow precise ON-OFF dynamics, thus hindering generation of temporal profiles of protein levels seen in vivo. We developed an improved Tet-On based system augmented with conditional destabilising elements at the post-translational level that permits simultaneous control of gene expression and protein stability. Integrating these properties to control expression of a fluorescent protein in mouse Embryonic Stem Cells (mESCs), we found that adding protein stability control allows faster response times to changes in small molecules, fully tunable and enhanced dynamic range, and vastly improved microfluidic-based in-silico feedback control of gene expression. Finally, we highlight the effectiveness of our dual-input system to finely modulate levels of signalling pathway components in stem cells.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献