Revisiting Parameter Estimation in Biological Networks: Influence of Symmetries

Author:

Sreedharan Jithin K.ORCID,Turowski Krzysztof,Szpankowski Wojciech

Abstract

AbstractGraph models often give us a deeper understanding of real-world networks. In the case of biological networks they help in predicting the evolution and history of biomolecule interactions, provided we map properly real networks into the corresponding graph models. In this paper, we show that for biological graph models many of the existing parameter estimation techniques overlook the critical property of graph symmetry (also known formally as graph automorphisms), thus the estimated parameters give statistically insignificant results concerning the observed network. To demonstrate it and to develop accurate estimation procedures, we focus on the biologically inspired duplication-divergence model, and the up-to-date data of protein-protein interactions of seven species including human and yeast. Using exact recurrence relations of some prominent graph statistics, we devise a parameter estimation technique that provides the right order of symmetries and uses phylogenetically old proteins as the choice of seed graph nodes. We also find that our results are consistent with the ones obtained from maximum likelihood estimation (MLE). However, the MLE approach is significantly slower than our methods in practice.

Publisher

Cold Spring Harbor Laboratory

Reference29 articles.

1. Evolution by gene duplication: an update;Trends in Ecology & Evolution,2003

2. Susumu Ohno . Evolution by gene duplication. Springer-Verlag, Berlin–Heidelberg, 1970. 2

3. Evolving protein interaction networks through gene duplication

4. Choosing appropriate models for protein–protein interaction networks: a comparison study;Briefings in Bioinformatics,2013

5. Not all scale-free networks are born equal: the role of the seed graph in PPI network evolution;PLoS Computational Biology,2007

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3