Abstract
AbstractCD36 is a platelet membrane glycoprotein whose engagement with oxidized low-density lipoprotein (oxLDL) results in platelet activation. The CD36 gene has been associated with platelet count, platelet volume, as well as lipid levels and CVD risk by genome-wide association studies. Platelet CD36 expression levels have been shown to be associated with both the platelet oxLDL response and an elevated risk of thrombo-embolism. Several genomic variants have been identified as associated with platelet CD36 levels, however none have been conclusively demonstrated to be causative. We screened 81 expression quantitative trait loci (eQTL) single nucleotide polymorphisms (SNPs) associated with plateletCD36expression by a Massively Parallel Reporter Assay (MPRA) and analyzed the results with a novel Bayesian statistical method. Ten eQTLs located in a 35kb region upstream of theCD36transcriptional start site demonstrated significant transcription shifts between their minor and major allele in the MPRA assay. Of these, rs2366739 and rs1194196, separated by only 20bp, were confirmed by luciferase assay to alter transcriptional regulation. In addition, electromobility shift assays demonstrated differential DNA:protein complex formation between the two alleles of this locus. Furthermore, deletion of the genomic locus by CRISPR/Cas9 in K562 cells results in upregulation of CD36 transcription. These data indicate that we have identified a variant that regulates expression ofCD36, which in turn affects platelet function. To assess the clinical relevance of our findings we used the PhenoScanner tool, which aggregates large scale GWAS findings; the results reinforce the clinical relevance of our variants and the utility of the MPRA assay. The study demonstrates a generalizable paradigm for functional testing of genetic variants to inform mechanistic studies, support patient management and develop precision therapies.Author SummaryPlatelets are anucleate cells that are best known as regulators of vascular hemostasis and thrombosis but also play important roles in cancer, angiogenesis, and inflammation. CD36 is a platelet surface marker that can activate platelet in response to oxidized low density lipoprotein (oxLDL). CD36 has been associated with numerous cardiovascular traits in human including blood lipid levels, platelet count, and cardiovascular disease prevalence in human genetic studies. Human variability in platelet CD36 levels are associated with the platelet response to oxLDL. However, the genetic mechanisms responsible for the variability of CD36 levels are unknown. We examined 81 genetic variants associated withCD36levels for functionality using a high-throughput assay. Of the ten variants that were identified in that assay, one doublet, rs2366739 and rs1194196, were confirmed using additional molecular and cellular assays. Deletion of the genomic region containing rs2366739 and rs1194196 resulted in overexpression ofCD36in a cell culture system. This finding indicates a control locus which can serve as a potential target in modulating CD36 expression and altering platelet function in cardiovascular disease.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献