Identification of functional variants for plateletCD36expression by Massively Parallel Reporter Assay

Author:

Madan Namrata,Ghazi Andrew R.,Kong Xianguo,Chen Edward S.ORCID,Shaw Chad A.,Edelstein Leonard C.ORCID

Abstract

AbstractCD36 is a platelet membrane glycoprotein whose engagement with oxidized low-density lipoprotein (oxLDL) results in platelet activation. The CD36 gene has been associated with platelet count, platelet volume, as well as lipid levels and CVD risk by genome-wide association studies. Platelet CD36 expression levels have been shown to be associated with both the platelet oxLDL response and an elevated risk of thrombo-embolism. Several genomic variants have been identified as associated with platelet CD36 levels, however none have been conclusively demonstrated to be causative. We screened 81 expression quantitative trait loci (eQTL) single nucleotide polymorphisms (SNPs) associated with plateletCD36expression by a Massively Parallel Reporter Assay (MPRA) and analyzed the results with a novel Bayesian statistical method. Ten eQTLs located in a 35kb region upstream of theCD36transcriptional start site demonstrated significant transcription shifts between their minor and major allele in the MPRA assay. Of these, rs2366739 and rs1194196, separated by only 20bp, were confirmed by luciferase assay to alter transcriptional regulation. In addition, electromobility shift assays demonstrated differential DNA:protein complex formation between the two alleles of this locus. Furthermore, deletion of the genomic locus by CRISPR/Cas9 in K562 cells results in upregulation of CD36 transcription. These data indicate that we have identified a variant that regulates expression ofCD36, which in turn affects platelet function. To assess the clinical relevance of our findings we used the PhenoScanner tool, which aggregates large scale GWAS findings; the results reinforce the clinical relevance of our variants and the utility of the MPRA assay. The study demonstrates a generalizable paradigm for functional testing of genetic variants to inform mechanistic studies, support patient management and develop precision therapies.Author SummaryPlatelets are anucleate cells that are best known as regulators of vascular hemostasis and thrombosis but also play important roles in cancer, angiogenesis, and inflammation. CD36 is a platelet surface marker that can activate platelet in response to oxidized low density lipoprotein (oxLDL). CD36 has been associated with numerous cardiovascular traits in human including blood lipid levels, platelet count, and cardiovascular disease prevalence in human genetic studies. Human variability in platelet CD36 levels are associated with the platelet response to oxLDL. However, the genetic mechanisms responsible for the variability of CD36 levels are unknown. We examined 81 genetic variants associated withCD36levels for functionality using a high-throughput assay. Of the ten variants that were identified in that assay, one doublet, rs2366739 and rs1194196, were confirmed using additional molecular and cellular assays. Deletion of the genomic region containing rs2366739 and rs1194196 resulted in overexpression ofCD36in a cell culture system. This finding indicates a control locus which can serve as a potential target in modulating CD36 expression and altering platelet function in cardiovascular disease.

Publisher

Cold Spring Harbor Laboratory

Reference50 articles.

1. World Health Organization. The top 10 causes of death: World Health Organization; 2017 [updated January 2017; cited 2017 February 9, 2017]. World Health Organization Fact Sheets]. Available from: http://www.who.int/mediacentre/factsheets/fs310/en/.

2. Composition of Coronary Thrombus in Acute Myocardial Infarction

3. Large-Scale Gene-Centric Meta-analysis across 32 Studies Identifies Multiple Lipid Loci

4. A Meta-Analysis and Genome-Wide Association Study of Platelet Count and Mean Platelet Volume in African Americans

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3