Two parallel arms of the heterochronic pathway direct coordinated juvenile-to-adult transition through distinct LIN-29 isoforms

Author:

Azzi Chiara,Aeschimann FlorianORCID,Neagu Anca,Großhans HelgeORCID

Abstract

AbstractRobust organismal development relies on temporal coordination of disparate physiological processes. In Caenorhabditis elegans, the timely transition from juvenile to adult is controlled by the heterochronic pathway, a regulatory cascade of conserved proteins and small RNAs. The heterochronic pathway culminates in accumulation of the transcription factor LIN-29, which triggers coordinated execution of juvenile-to-adult (J/A) transition events. Here, we reveal that two LIN-29 isoforms fulfill distinct functions during the J/A transition. We show that the functional differences between the isoforms do not stem from differences in their sequences, but from their distinct spatiotemporal expression, and we propose that distinct LIN-29 dose sensitivities of the individual J/A transition events help to ensure their temporal ordering. We demonstrate that unique lin-29 isoform expression patterns are generated by the RNA-binding protein LIN-41 for lin-29a, and the transcription factor HBL-1 for lin-29b. By regulating both HBL-1 and LIN-41, the RNA-binding protein LIN-28 coordinates LIN-29 isoform activity. Thus, our findings reveal that a coordinated transition from juvenile to adult involves branching of a linear pathway to achieve timely control of multiple events.

Publisher

Cold Spring Harbor Laboratory

Reference51 articles.

1. Abete-Luzi, P. , and Eisenmann, D.M. (2018). Regulation of C. elegans L4 cuticle collagen genes by the heterochronic protein LIN-29. Genesis 56.

2. The Caenorhabditis elegans hunchback-like Gene lin-57/hbl-1 Controls Developmental Time and Is Regulated by MicroRNAs

3. Central Precocious Puberty Caused by Mutations in the Imprinted Gene MKRN3

4. LIN41 Post-transcriptionally Silences mRNAs by Two Distinct and Position-Dependent Mechanisms

5. Let-7 coordinates the transition to adulthood through a single primary and four secondary targets;Life Sci. Alliance,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3