Carbon dots for efficient siRNA delivery and gene silencing in plants

Author:

Schwartz Steven. H.ORCID,Hendrix Bill,Hoffer Paul,Sanders Rick A.,Zheng Wei

Abstract

SUMMARYThe Initiation of RNA interference (RNAi) by topically applied double stranded RNA (dsRNA) has potential applications for plant functional genomics, crop improvement and crop protection. The primary obstacle for the development of this technology is efficient delivery of RNAi effectors. The plant cell wall is a particularly challenging barrier to the delivery of macromolecules. Many of the transfection agents that are commonly used with animal cells produce nanocomplexes that are significantly larger than the size exclusion limit of the plant cell wall. Utilizing a class of very small nanoparticles called carbon dots, a method of delivering siRNA into the model plant Nicotiana benthamiana and tomato is described. Low-pressure spray application of these formulations with a spreading surfactant resulted in strong silencing of GFP transgenes in both species. The delivery efficacy of carbon dot formulations was also demonstrated by silencing endogenous genes that encode two sub-units of magnesium chelatase, an enzyme necessary for chlorophyll synthesis. The strong visible phenotypes observed with the carbon dot facilitated delivery were validated by measuring significant reductions in the target gene transcript and/or protein levels. Methods for the delivery of RNAi effectors into plants, such as the carbon dot formulations described here, could become valuable tools for gene silencing in plants with practical applications in plant functional genomics and agriculture.

Publisher

Cold Spring Harbor Laboratory

Reference59 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3