Semi-automatic model revision of Boolean regulatory networks: confronting time-series observations with (a)synchronous dynamics

Author:

Gouveia FilipeORCID,Lynce InêsORCID,Monteiro Pedro T.ORCID

Abstract

AbstractMotivationComplex cellular processes can be represented by biological regulatory networks. Computational models of such networks have successfully allowed the reprodution of known behaviour and to have a better understanding of the associated cellular processes. However, the construction of these models is still mainly a manual task, and therefore prone to error. Additionally, as new data is acquired, existing models must be revised. Here, we propose a model revision approach of Boolean logical models capable of repairing inconsistent models confronted with time-series observations. Moreover, we account for both synchronous and asynchronous dynamics.ResultsThe proposed tool is tested on five well known biological models. Different time-series observations are generated, consistent with these models. Then, the models are corrupted with different random changes. The proposed tool is able to repair the majority of the corrupted models, considering the generated time-series observations. Moreover, all the optimal solutions to repair the models are produced.Contact{filipe.gouveia@tecnico.ulisboa.pt,pedro.tiago.monteiro@tecnico.ulisboa.pt}

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3