Mud, microbes, and macrofauna: seasonal dynamics of the iron biogeochemical cycle in an intertidal mudflat

Author:

Beam Jacob P.,George Sarabeth,Record Nicholas R.,Countway Peter D.,Johnston David T.,Girguis Peter R.,Emerson David

Abstract

AbstractMicroorganisms and burrowing animals exert a pronounced impact on the cycling of redox sensitive metals in coastal sediments. Sedimentary metal cycling is likely controlled by seasonal processes including changes in temperature, animal feeding behavior due to food availability, and availability of organic matter in sediments. We hypothesized that the iron biogeochemical cycle and associated sedimentary microbial community will respond to seasonal changes in a bioturbated intertidal mudflat. In this study, we monitored the spatiotemporal dynamics of porewater and highly reactive solid phase iron with the corresponding prokaryotic and eukaryotic sedimentary microbial communities over one annual cycle from November 2015 to November 2016. Continuous and seasonally variable pools of both porewater Fe(II) and highly reactive iron (FeHR) were observed throughout the season with significant increases of Fe(II) and FeHR in response to increased sediment temperature in summer months. Maximum concentrations of Fe(II) and FeHR were predominantly confined to the upper 5 cm of sediment throughout the season. Iron-oxidizing and -reducing microorganisms were present and stable throughout the season, and exhibited strong depth-dependent stratification likely due to availability of Fe(II) and FeHR pools, respectively. Otherwise, the community was dominated by Deltaproteobacteria, which are involved in sulfur and potentially iron cycling, as well as Gammaproteobacteria and Bacteroidetes. The microbial community was relatively stable throughout the seasonal cycle, but showed strong separation with depth, probably driven by changes in oxygen availability and organic matter. The relative abundance of diatoms revealed a noticeable seasonal signature, which we attribute to spring and fall blooms recorded in the sediments. Macro-, meio, and microfauna were detected throughout the season with some seasonal variations that may influence sedimentary iron transformations by active microbial grazing. The seasonal dynamics of the sedimentary iron cycle are controlled by numerous, interdependent processes, with macrobiota-microbiota relationships and depth stratification comprising primary components. Deciphering these processes in natural ecosystems is essential to understand how they might respond to future environmental perturbations, such as anthropogenic nutrient release to coastal systems.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3